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Abstract

Systems that store objects at a large number of sites require
fault-tolerant and timely garbage collection. A popular tech-
nique is to trace each site independently using inter-site ref-
erences as roots. However, this fails to collect cyclic garbage
spread across sites. We present an algorithm that collects
cyclic garbage by involving only the sites containing it.

Our algorithm is based on finding objects highly likely to
be cyclic garbage and tracing backward from them to check
if they are reachable from any root. We present efficient
techniques that make conducting such traces practical. The
algorithm collects all distributed cyclic garbage, is safe in
the presence of concurrent mutations, and has low space and
time overhead.

1 Introduction

Emerging distributed systems will use objects stored at a large
number of sites. The scale of such systems poses new chal-
lenges to reclaiming the storage of objects unreachable by
applications. Such objects are known as garbage. A simple
way to collect garbage is to trace the graph of reachable ob-
jects and then collect objects not visited by the trace [HK82].
However, a global trace requires the cooperation of all sites
before it can collect any garbage.

Timely and fault tolerant collection requires that each site
trace local objects and collect garbage independently of other
sites. However, for a local trace to be safe, object references
from other sites must be treated as roots. Thus, many dis-
tributed systems use local tracing in combination with some
variant of inter-site reference counting to track inter-site refer-
ences [Bis77, Ali85, Bev87, SDP92, JJ92, BEN 93, ML94].

Local tracing has the desirable locality property that col-
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lecting a garbage object requires the cooperation of only the
sites it is reachable from. Locality results in good fault tol-
erance and timely collection because it avoids unnecessary
dependencies; if a site is crashed, partitioned from others, or
otherwise slow, it will delay the collection of only the garbage
reachable from its objects.

However, treating inter-site references as roots leads to
a problem: it does not collect mutually reachable garbage
objects located on different sites; such garbage is said to be
cyclic. Inter-site cycles are relatively uncommon, but they
do occur in practice. For example, hypertext documents
often form large, complex cycles. Collection of such cycles
is particularly important in long-lived systems because even
small amounts of uncollected garbage can accumulate over
time to cause a significant storage loss.

The challenge in collecting an inter-site garbage cycle is
to preserve locality, that is, to involve only the sites contain-
ing the cycle. This has proven surprisingly difficult. Most
previous schemes do not preserve locality. For example,
some conduct complementary global traces in addition to lo-
cal tracing [Ali85, JJ92]. The drawbacks of global tracing
can be alleviated by tracing within groups of selected sites
[LQP92, MKI 95, RJ96], but inter-group cycles may never
be collected.

Few schemes for collecting inter-site cycles have the lo-
cality property. The most prominent among these is based on
migrating objects so that cyclic garbage ends up in a single
site and is collected by local tracing [Bis77, SGP90, ML95].
However, migration is expensive and must deal with updat-
ing references to migrated objects; moreover, some systems
do not support migration due to security or autonomy con-
straints. Other local schemes are prohibitively costly or com-
plex [Sch89, LC97].

We present a practical scheme that has locality. It has
two parts. The first part identifies objects that are highly
likely to be cyclic garbage—the suspects. We have previously
designed a suitable technique for finding suspects using the
distance heuristic [ML95]. The second part checks if the
suspects are in fact garbage. This part has the luxury of using
techniques that are too costly if applied to all objects but are
acceptable if applied only to suspects.

This paper describes a technique for checking suspects by
tracing back from a suspect to see if it is reachable from any
root. This approach preserves locality and scalability. Back
tracing was proposed earlier by Fuchs [Fuc95]. However,
this proposal assumed that inverse information was available
for references, and it ignored problems due to concurrent
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mutations and forward local traces. We present efficient
techniques for conducting back tracing that handle these and
other practical problems. Our scheme computes the infor-
mation required to back trace, controls when to start a back
trace, and accounts for concurrent mutations and forward
traces. We show that the scheme is safe and collects all inter-
site garbage cycles. Its space and time overheads are low and
limited to suspected objects.

The rest of this paper is organized as follows. Section 2
describes the system model and local tracing. Section 3
summarizes the distance heuristic for finding suspects. Sec-
tion 4 presents basic techniques for back tracing, Section 5
describes how the information required for back tracing is
computed, and Section 6 describes how concurrent muta-
tions and traces are handled. Section 7 summarizes related
work, and Section 8 contains our conclusions.

2 The Problem Context

Our scheme is useful in systems that store persistent objects
over a large number of sites. Objects contain references to
other objects, which may reside at other sites. Objects are
clustered within sites so that inter-site object references are
relatively uncommon.

Certain objects, designated as persistent roots, serve as en-
try points into the object store. For example, a name server or
a directory object may be a persistent root. User applications
begin by accessing a persistent root and then traversing refer-
ences to access other objects. An application may mutate the
object graph by creating objects and by inserting and deleting
references; therefore, it is called the mutator. A mutator may
traverse an inter-site reference by passing the reference in a
message from the source site to the target site.

A mutator may store a reference in a local variable out-
side the object store and retrieve the reference later; these
references constitute the application roots. In practice, ap-
plication roots are handled using techniques specific to the
application model. For simplicity, in this paper we will treat
application roots like persistent roots; Section 6.3 discusses
some related issues.

Mutations may cause some objects to become unreachable
from any persistent root; these are of no use to applications
and are said to be garbage, while other objects are said to
be live. The job of the garbage collector is to detect garbage
objects and reclaim their storage.

Local Tracing

Each site conducts a local trace independently of other sites.
For a local trace to be safe, it must not collect objects reach-
able from other sites. Therefore, it treats incoming inter-
site references as roots. Different methods may be em-
ployed to record inter-site references; e.g., one-bit reference
counts [Ali85, JJ92], weighted reference counts [Bev87], and
reference lists [Bis77, SDP92, BEN 93]. We use inter-site

reference listing because it handles site failures and provides
better fault-tolerance for messages [ML94]. It works as fol-
lows.

Each site keeps a table of incoming references, called in-
refs. Each entry in the table, called an inref, stores a reference
and a list of source sites known to contain that reference. For
example, in Figure 1, site R has an inref c, which indicates the
source sites P and Q. (An inref is identified by the reference
it contains, so we say “inref c” to denote the inref containing
c.) The local collector traces from local persistent roots and
the inrefs. For simplicity, we treat a local persistent root as a
permanent inref.

a b c

site P                        site Q                     site R

persistent
root

inrefs a: root
e: Q

c: P, Q
g: Q

b: P
f: R

b
c

c
e
g

outrefs
f

de
g

f

Figure 1: Recording inter-site references.

Each site also keeps a table of outgoing references, called
outrefs. The outrefs are used in inserting and removing inrefs
as follows. Suppose a site Q sends a reference to site P and
the reference points to an object c in site R. The recipient, P,
checks whether c exists in its outrefs. If not, it enters c in the
outrefs and sends an insert message to the owner, R; when R
receives the message, it inserts P in the source list of inref c.
For safe execution, the sender Q retains its outref for c until
R is known to have received the insert message. There are
various protocols for sending, deferring, or avoiding insert
messages while ensuring safety [SDP92, BEN 93, ML94].
We assume that a safe insert protocol exists and that the full
source list of an inref can be found when needed.

A site P trims its outrefs during each local trace. After
the trace, P removes untraced outrefs and reports them to
their target sites in update messages; the target sites remove
P from the source lists in the inrefs for the given references.
An inref with an empty source list is removed. In the example
in Figure 1, when Q does its next local trace, it will collect
d, drop its outref for e, and send an update message to P.
Then P will drop its inref for e and collect e during the next
local trace. This illustrates the locality property: collecting
a garbage object involves only the sites it is reachable from.

The problem with local tracing is that it fails to collect
cycles of garbage objects spread over multiple sites. For
example, in Figure 1, P and Q will never collect f and g and all
objects reachable from them. Therefore, a separate scheme is
necessary to collect inter-site cycles. Such a scheme should
have the following properties:

2



Safety: do not collect a live object.
Completeness: collect all garbage cycles eventually.
Locality: minimize inter-site dependence.

3 Heuristic for Finding Suspects

The heuristic for finding objects likely to be cyclic garbage
may be unsafe: it may suspect some live objects, but good
performance requires that few suspects are live. The heuristic
must be complete in identifying all cyclic garbage. Further-
more, it must have little time and space overhead per object
since it must inspect a large number of objects.

A suitable technique for finding suspects is the distance
heuristic [ML95]. The distance of an object is the minimum
number of inter-site references in any path from a persistent
root to that object. The distance of garbage is infinity. In
Figure 1, is reachable from root through two paths: one
with two inter-site references and another with one; therefore,
its distance is one.

Suspects are found by estimating distances. A distance
field is associated with each source site in an inref, and the
distance of the inref as a whole is the smallest such distance.
When a new source is added to in an inref, its distance is
conservatively set to one. A persistent root is modelled as an
inref with zero distance. The local trace propagates distances
from inrefs to outrefs. To do this, inrefs are traced in the in-
creasing order of their distances. When the trace first reaches
an outref, its distance is set to one plus that of the inref being
traced. Finally, changes in the distances of outrefs are sent
to target sites in update messages, where they are reflected in
the corresponding inrefs.

As distances are propagated through local traces and up-
date messages, the estimated distances of cyclic garbage keep
increasing without bound. The following theorem holds for
arbitrarily complex cycles: If all sites containing a cycle do
at least one local trace in a certain period of time, called a
round, then rounds after the cycle became garbage, the
estimated distances of all objects in the cycle will be at least

.
Therefore, we select a suspicion threshold distance, ,

and regard objects with greater estimated distances as highly
likely to be garbage. Inrefs with distances less than or equal
to the threshold —and objects and outrefs traced from them—
are said to be clean. The remaining are said to be suspected.
The higher the threshold, the smaller the chance that sus-
pected objects might be live, but the longer it takes to detect
them.

The distance heuristic is complete because all cyclic
garbage is eventually suspected. Unlike previous heuris-
tics, its accuracy can be controlled arbitrarily. Heuristics that
suspect the inrefs not accessed recently are not suitable for
persistent stores since live objects might not be accessed for
long periods.

Since suspects might be live, they cannot be reclaimed
directly. Instead, another technique must confirm suspected

garbage before reclaiming it. The outcome of the this tech-
nique may be used to tune the suspicion threshold. For
example, if too many suspects are found live, the threshold
should be increased.

In an earlier paper, we suggested migrating the sus-
pects [ML95]. This paper presents a technique that does
not migrate objects.

4 Back Tracing

The key insight behind back tracing is that whether an object
is reachable from a root is equivalent to whether a root is
reachable from the object if all references are reversed. Thus,
the idea is to trace backwards from a suspect: if the trace
encounters a persistent root, the suspect is live, otherwise it
is garbage.

The virtue of back tracing is that it has the locality prop-
erty. For example, a back trace started in a two-site cycle will
involve only those two sites. This is in contrast to a forward
trace from the persistent roots, which is a global task. In-
deed, a global forward trace would identify all garbage in the
system, while a back trace checks only whether a particular
object is live. Thus, back tracing is not suitable as the pri-
mary means of collecting garbage. We expect most garbage
to be collected by local tracing and update messages. Back
tracing is a complementary technique to detect uncollected
garbage, and we use it for objects suspected to be on dis-
tributed garbage cycles.

Back tracing was proposed earlier by Fuchs [Fuc95]. How-
ever, this proposal assumed that each object was contained
in a site by itself and inverse information was available for
references, and it ignored problems due to concurrent mu-
tations and forward traces. We present practical techniques
for conducting back tracing. This section describes the basic
technique, and Section 6 extends it to handle the problems
due to concurrent mutations and forward traces.

4.1 Back Steps

In practice, tracing back over individual references would be
prohibitively expensive—both in the time required to con-
duct it and in the space to store the required information.
Therefore, a back trace leaps between outrefs and inrefs. For
brevity, we refer to inrefs and outrefs collectively as iorefs.
A back trace takes two kinds of steps between iorefs:

Remote steps that go from an inref to the corresponding
outrefs on the source sites.

Local steps that go from an outref to the inrefs it is locally
reachable from1.

The information needed to take remote steps from an inref
is already present in its source list. We do need extra infor-

1A reference is locally reachable from another if there is a path of zero
or more local references from the object referenced by the first to an object
containing the second.
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mation to take local steps. We define the inset of a reference
as the set of inrefs from which it is locally reachable. For
example, in Figure 2, in site Q, the inset of outref c is a, b .
We compute and store the insets of outrefs so that back traces
may use them when required. Section 5 describes techniques
for computing insets efficiently.

a

d

site P                        site Q                     site R

inrefs c: Q d: Qa: P
b: R

a: c c: a, b
d: boutrefs b: d

b

c

Figure 2: Insets of suspected outrefs.

A back trace consists of taking local and remote steps
alternately. For example, a back trace at outref c in Q will
take local steps to inrefs a and b. From there, it will take
remote steps to outrefs a and b and so on.

In general, a back trace may be started from any suspected
ioref. However, a back trace started from an inref a will not
find paths to object a from other inrefs on the same site. For
example, in Figure 2, a back trace started from inref a will
miss the path from inref b to object a. On the other hand, a
back trace started from an outref c that is locally reachable
from a will find all paths to a because the set of inrefs that
c is locally reachable from must include all inrefs that a is
locally reachable from. Thus, if a back trace started from an
outref does not encounter a persistent root, all inrefs visited
by the trace must be to garbage objects. Therefore, we start
a back trace from an outref rather than an inref.

4.2 How far to go

A practical requirement on a back trace is to limit its spread
to suspected iorefs. Thus, rather than going all the way back
in the search for a persistent root, a back trace returns “Live”
as soon as it reaches a clean ioref. This rule limits the cost of
back tracing to the suspected parts of the object graph in two
ways:

We need to compute insets for suspected outrefs only.
A back trace from a live suspect does not spread to the
clean parts of the object graph.

The rule has the disadvantage that back tracing will fail to
identify a garbage cycle until all objects on it are suspected.
This is not a serious problem, however, because the distance
heuristic ensures that all cyclic garbage objects are eventually
suspected. The next section describes the suitable time to
start a back trace.

4.3 When to Start

A site starts a back trace from a suspected ioref based on its
distance. There is a tradeoff here. A back trace started soon
after an ioref crosses the suspicion threshold, , might run
into a garbage ioref that is clean because its distance has not
yet crossed and return Live unnecessarily. On the other
hand, a back trace started too late delays collection.

Here, we estimate a suitable back threshold 2 to trigger
a back trace. Ideally, by the time the distance of any ioref
on a cycle is above 2, those of other iorefs on the cycle
should be above . If the distance of an ioref y is 2 and
the distance from x to y is , then the distance of x should be
at least 2 . Therefore, an appropriate value for 2 is

, where is a conservatively estimated (large) cycle
length.

The use of back threshold is an optimization and does
not compromise completeness. If a back trace is started
prematurely in a garbage cycle, the trace might return Live
unnecessarily, but a future trace would confirm the garbage.
To this end, each ioref has a back threshold field initially set
to 2. When a back trace visits an ioref x, the back threshold
of x is incremented by, say, . Thus, the next back trace
from x, if any, is triggered only when its distance crosses
the increased threshold. This has the desirable property that
live suspects will stop generating back traces once their back
thresholds are above their distances. Garbage objects, on the
other hand, will generate periodic back traces until they are
collected.

4.4 Back Tracing Algorithm

Back tracing can be formulated as two mutually recursive
procedures: BackStepRemote, which takes remote steps, and
BackStepLocal, which takes local steps. Both are similar to
a standard graph search algorithm.

BackStepRemote (site P, reference i)
if i is not in Inrefs return Garbage
if Inrefs[i] is clean return Live
if Inrefs[i] is visited by this trace return Garbage
mark Inrefs[i] visited by this trace
for each site Q in Inrefs[i].Sources do

if BackStepLocal(Q, i) is Live return Live
return Garbage

end
BackStepLocal (site P, reference o)

if o is not in Outrefs return Garbage
if Outrefs[o] is clean return Live
if Outrefs[o] is visited by this trace return Garbage
mark Outrefs[o] visited by this trace
for each reference i in Outrefs[o].Inset do

if BackStepRemote(P, i) is Live return Live
return Garbage

end

If the reference being traced is not found among the
recorded iorefs, its ioref must have been deleted by the
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garbage collector; so the call returns Garbage. To avoid
revisiting iorefs and to avoid looping, an ioref remembers
that a trace has visited it until the trace completes; if the trace
makes another call on the ioref, the call returns Garbage im-
mediately. Note that the calls within both for-loops can be
made in parallel. For example, in Figure 3, a call at inref c in
R will fork off two branches to P and Q. One branch will visit
inref a first and go further back, while the other will return
Garbage.

a b c

site P                        site Q                     site R

long path
from root

inrefs a: S c: P, Qb: P

b: a
c: a

c: boutrefs d: c

d

Figure 3: A back trace from d will branch.

An activation frame is created for each call. A frame
contains the identity of the frame to return to (including the
caller site, etc.), the ioref it is active on, a count of pending
inner calls to BackStep, and a result value to return when the
count becomes zero. We say that a trace is active at an ioref
if it has a call pending there; we say that a trace has visited
an ioref if the ioref is marked visited by the trace.

This algorithm is simpler than Fuchs’s [Fuc95]. This is
because Fuchs’s algorithm is designed to detect garbage ob-
jects “on the way” even if the back trace was started from a
live object. We start back traces from objects highly likely
to be garbage and therefore do not incur the complexity of
Fuchs’s optimization.

4.5 Collecting Garbage

If the outer-most call to BackStep returns Garbage, all inrefs
visited by the trace are garbage. However, when an inter-
mediate call returns Garbage, it cannot be inferred that the
corresponding ioref is garbage, because that call would not
have visited iorefs that have already been visited by other
branches in the same trace. For example, in Figure 2, the
call at inref b may return Garbage because inref a has been
visited, although b is not garbage. Therefore, no inref is
removed until the outer-most call returns.

When the outer-most call returns, the site that initiated the
back trace reports the outcome to all sites reached during
the trace, called the participants. We call this the reporting
phase. For the initiator to know the set of participants, each
participant appends its id to the response of a call. If the out-
come is Garbage, each participant flags the inrefs visited by
the trace as garbage. If the outcome is Live, each participant
clears the visited marks for that trace. Note that the outcome
is likely to be Garbage since the suspected objects are highly
likely to be garbage.

An inref flagged as garbage is not used as a root in the
local trace. Such an inref is not removed immediately in
order to maintain referential integrity between outrefs and
inrefs. Flagging the inrefs visited by the trace causes the
cycle to be deleted the next time the containing sites do a
local trace. The flagged inrefs are then removed through
regular update messages.

4.6 Message Complexity

Back tracing involves two messages for each inter-site refer-
ence it traverses—one for the call and another for its response.
Finally, the report phase involves a message to each partici-
pant. Thus, if a cycle resides on sites and has inter-site
references, 2 messages are sent. These messages are
small and can be piggybacked on other messages.

Loss of messages can be handled by suitably long timeouts
(possibly, after repeated query messages to find the status).
If a site waiting for a response to a call times out, it can
safely assume that the call returned Live. Similarly, if a site
waiting for the final outcome times out, it can assume that
the outcome is Live.

4.7 Multiple Back Traces

Several back traces may be triggered concurrently at the same
or different sites. The site starting a trace assigns it a unique
id. Thus, the visited field of an ioref stores a set of trace ids.

Multiple traces may be active for objects on the same cycle,
but this is not likely for the following reason. The distances
of various iorefs in a cycle are likely to be different such that
one of them will cross the threshold 2 first. Even if several
iorefs have the same distance, there will be differences in real
time when they cross 2 due to randomness in when local
traces complete. The time between successive local traces at
a site is long—on the order of minutes or more—compared
to the little amount of processing and messaging involved in
a back trace—on the order of milliseconds at each site (or
tenths of a second if messages are deferred and piggybacked).
Therefore, the first back trace started in a cycle is likely to
visit all other iorefs in the cycle before they cross 2.

There is no problem if one trace confirms garbage and
results in the deletion of an ioref when another trace has
visited it. The second trace can ignore the deletion, even if
its call is active there, because activation frames provide the
necessary return information.

5 Computing Back Information

Back information comprises the source sites of inrefs (for
remote steps) and the insets of outrefs (for local steps). The
source sites are maintained by the underlying scheme as de-
scribed in Section 2. Here, we describe the computation of
the insets of outrefs. This information is computed and stored
such that it is ready for use by back traces when they arrive.
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We compute insets of outrefs by first computing their in-
verse, namely, the outsets of suspected inrefs. We define the
outset of a reference as the set of suspected outrefs locally
reachable from it. Outsets and insets are simply two differ-
ent representations of reachability information from inrefs to
outrefs.

Ideally, we want to compute outsets during the local for-
ward trace from suspected inrefs. However, a trace does not
provide full reachability from inrefs to outrefs. This happens
because a trace scans a reachable object only once, which is
crucial for its linear performance. For example, in Figure 4,
if a is traced before b, then the trace from a will visit z first.
Therefore, the trace from b will stop at z and will not discover
the outref c.

a

site Q

inrefs
a: P
b: R

c: a, b
d: boutrefs

b

c d
x y

z

Figure 4: Tracing does not compute reachability.

Therefore, we need to modify the trace from suspected
inrefs to compute outsets. We describe two techniques below:
the first is straightforward but may retrace objects, while the
second traces each object only once.

5.1 Independent Tracing from Inrefs

The straightforward technique is to trace from each suspected
inref ignoring the traces from other suspected inrefs. Con-
ceptually, each trace from a suspected inref uses a different
color to mark visited objects. Thus, objects visited by one
such trace may be revisited by another trace. However, ob-
jects traced from clean inrefs are never revisited. They may
be considered marked with a special color, black, that is never
revisited.

Independent tracing from each suspected inref reaches the
complete set of suspected outrefs locally reachable from it.
The problem with this technique is that objects may be traced
multiple times, and tracing objects is expensive in practice.
If there are suspected inrefs, suspected objects, and
references in the suspected objects, the complexity of this
scheme is instead of the usual .

5.2 Bottom-up Computation

Outsets of suspected inrefs may be found by computing the
outsets of suspected objects bottom up during the forward
trace. Outsets of suspected objects are remembered in an
outset table; once the outset of a suspect z is computed, it is

available when tracing from various inrefs without having to
retrace z.

The following is a first cut at the solution:

TraceSuspected(reference x)
if x is marked return
mark x
Outset[x] := null
for each reference z in x do

if z is clean continue loop
if z is remote add z to Outset[x] and continue loop
TraceSuspected(z)
Outset[x] := Outset[x] Outset[z]

endfor
end

The above solution does not work because it does not ac-
count for backward edges in the depth first tree. For example,
in Figure 4, if inref a is traced first, the outset of z would be
erroneously set to null instead of c . Since the outset of
inref b uses that of z, it would miss c as well. In general, a
backward edge introduces a strongly connected component,
and the outsets of objects in a strongly connected compo-
nent should all be equal. Fortunately, strongly connected
components can be computed efficiently during a depth first
traversal with linear performance [Tar72]. For each object,
the algorithm finds the first object visited in its component,
called its leader. The algorithm uses a counter to mark ob-
jects in the order they are visited. An auxiliary stack is used
to find the objects in a component.

The following algorithm combines tracing, finding
strongly connected components, and computing outsets. The
algorithm sets the outset of each object to that of its leader.

TraceSuspected(reference x)
if x is marked return
Mark[x] := Counter
Counter := Counter+1
push x on Stack
Outset[x] := null
Leader[x] := Mark[x]
for each reference z in x do

if z is clean continue loop
if z is remote add z to Outset[x] and continue loop
TraceSuspected(z)
Outset[x] := Outset[x] Outset[z]
Leader[x] := min(Leader[x], Leader[z])

endfor
if Leader[x] = Mark[x] % x is a leader

repeat
z := pop from Stack % z is in the component of x
Outset[z] := Outset[x]
Leader[z] := infinity % so that later objects ignore z

until z = x
end

This algorithm traces each object only once. In fact, it uses
time and space except for the union of outsets.

In the worst case, if there are suspected outrefs, the union
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of outsets may take time and space.
Below we describe efficient methods for storing outsets and
for implementing the union operation; these methods provide
near-linear performance in the expected case and thus make
bottom-up computation attractive.

First, the outset table maps a suspect to an outset id and the
outset itself is stored separately in a canonical form. Thus,
suspected objects that have the same outset share storage.
If objects are well clustered on sites, there will be many
fewer distinct outsets than suspected objects. This is because
there are expected to be many fewer outrefs than objects;
further, objects arranged in a chain or a strongly connected
component have the same outset.

Second, the results of uniting outsets are memoized. A
hash table maps pairs of outset ids to the outset id for their
union. Thus, redoing memoized unions takes constant time.
If a pair is not found in the table, we compute the union
of the two outsets. Another table maps existing outsets (in
canonical form) to their ids. If the computed outset is found
there, we use the existing id.

The various data structures used while tracing from sus-
pected inrefs are deleted after the trace. Only the outsets of
the suspected inrefs are retained. As mentioned, these outsets
are equivalent to keeping the insets of the suspected outrefs,
since one may be computed from the other. The space occu-
pied by insets or outsets is , where and are
the number of suspected inrefs and suspected outrefs.

6 Concurrency

So far, we assumed that back traces used the information
computed during previous local traces and there were no
intervening mutations. In practice, a mutator may change
the object graph such that the computed back information is
no longer accurate. Further, mutators, local forward tracing,
and back tracing may execute concurrently. This section
presents techniques to preserve safety and completeness in
the presence of concurrency. We divide the problem into
several parts:

1. Keeping back information up to date assuming that muta-
tors, local traces, and back traces execute atomically, that
is, happen instantaneously without overlap.

2. Accounting for a non-atomic local trace: While the lo-
cal trace is computing back information, a mutator may
change the object graph, or a back trace may visit the site.

3. Accounting for a non-atomic mutator: the mutator may
store a reference in a variable and retrieve it later without
starting at a persistent root.

4. Accounting for a non-atomic back trace: Even if back in-
formation is kept up to date at each site, a back trace might
see an inconsistent distributed view because it reaches
different sites at different times.

6.1 Keeping Back Information up to Date

This section presents techniques for updating back infor-
mation conservatively while assuming that mutators, local
tracing, and back tracing execute instantaneously.

Back information may change due to reference creation
and deletion. We ignore deletions since doing so does not
violate safety; also, it does not affect completeness because
deletions are reflected in the computation of back information
during the next local trace. On the other hand, reference
creations must be handled such that a back trace does not
miss a new path to a suspect. For example, Figure 5 shows
the creation of a reference to z followed by the deletion of a
reference in the old path to z. If site Q does not update its
back information to reflect the new reference, but site S does
a local trace to reflect the deletion, a subsequent back trace
from g might return Garbage.

a b c

site P                site Q                     site R                site S
a: root
g:Q

c: Q
e: S

b: P
f: R

d

eg fxz

y

d: R

b: clean d: clean
f: e

c: clean
g: f

e: d

Figure 5: Reference mutations (dotted lines).

In general, creating a reference involves copying a refer-
ence z contained in object x into object y.2 Suppose x, y, and
z are in sites X, Y, and Z respectively, some or all of which
may be the same. If X is the same as Y, we say that the copy
is local; otherwise, we say it is remote. We discuss these
situations separately below.

6.1.1 Local Copy

A local copy is tricky to handle because it may change the
reachability from inrefs to outrefs although none of the ob-
jects involved might be associated with iorefs. In Figure 5,
creating a reference to z makes outref g reachable from inref
b. We maintain the following safety invariant.

Local Safety Invariant For any suspected outref o, o.inset
includes all inrefs o is locally reachable from.

The key to maintaining this invariant is that in order to
create a new path to a suspect z, the mutator must have tra-
versed an old path to it. This traversal must include traversing
an inter-site reference to a suspected object on the same site
since z must be reachable only through a suspected inref.
In the example shown, the mutator must have traversed the
reference to f. This provides an opportunity to patch back
information as follows.

2The creation of a reference to a new object z may be modeled as copying
a reference to z from a special persistent root.
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Transfer Barrier When a mutator transfers (or traverses) a
reference i to site Q, if Q has a suspected inref for i, it cleans
inref i and the outrefs in i.outset.

We show below that the transfer barrier preserves the local
safety invariant. We use an auxiliary invariant: For any
suspected outref o, o.inset does not include any clean inref.
This invariant holds right after a local trace, and the transfer
barrier preserves it because whenever it cleans any inref i, it
cleans all outrefs in i.outset. (Insets and outsets are consistent
since they are different views of the same information.)

Proof of Local Safety Suppose a reference from x to z is
copied into y. This affects only the outrefs reachable from
z: any such outref o may now be reachable from more inrefs
than listed in o.inset. (If z is an outref itself, then o is identical
to z.) We show that all outrefs such as o must be clean after
the mutation.

Object x must have been reachable from some inref i before
the mutation. Since x pointed to z, outref o was reachable
from inref i as well. Therefore, if the local safety invariant
held before the mutation, either o was clean or o.inset in-
cluded i. Suppose o.inset included i. If x was reachable from
a clean inref i, the auxiliary invariant implies that o must be
clean. Otherwise, the transfer barrier must have been applied
to some suspected inref i that x was reachable from. The bar-
rier would have cleaned all outrefs in i.outset, which includes
o since o.inset includes i. In either case, o must be clean after
the mutation.

Outrefs cleaned by the transfer barrier remain clean until
the site does the next local trace. If a back trace visits such an
outref before then, it will return Live. The back information
computed in the next local trace will reflect the paths created
due to the new reference. Therefore, if a back trace visits
later, it will find these paths.

It is important not to clean outrefs unnecessarily in order
that cyclic garbage is collected eventually. We ensure the
following condition for completeness.

Completeness Invariant An outref is clean only if it is
reachable from a clean inref or if it was live at the last local
trace at the site.

Proof of Completeness The invariant is valid right after
a local trace. Thereafter, we clean outrefs only due to the
transfer barrier. Suppose applying the barrier on inref i cleans
outref o. Then i must be live. Since o was reachable from
i when the last local trace was performed, o must be live at
that time.

In RPC-based systems, a reference may be transferred to a
site as the target, argument, or result of a remote call. Thus,
the transfer barrier may be implemented by checking such ref-
erences. In client-caching systems where objects from multi-
ple servers may be fetched into a client cache [LAC 96], the
barrier may be implemented by checking the transaction’s
read-write log at commit time.

6.1.2 Remote Copy

If a reference to z is copied into y at another site Y, we handle
it in one of the following ways depending on z:

1. Object z is in site Y:
Since Y received a reference to z from another site, it must
have an inref for z, so the transfer barrier applies to z.

2. Object z is not in site Y and Y has a clean outref for z:
No update is necessary.

3. Object z is not in site Y and Y has a suspected outref for z:
Clean the outref for z.

4. Object z is not in site Y and Y has no outref for z:
Y creates a clean outref for z and sends an insert message
to Z, which enters Y in the source list of inref z. (Also,
the transfer barrier applies to inref z.)

Each of these cases preserves the local safety and complete-
ness invariants. Only the last case results in the creation of a
new inter-site reference. Here, a potential problem is that the
insert message may arrive too late. We preserve the following
safety invariant.

Remote Safety Invariant For any suspected inref i, either
i.sources includes all remote sites containing i, or at least one
of its corresponding outrefs is clean.

We ensure this invariant by using the following rule:

Insert Barrier If site X sends a reference z at Z to site Y and
Y does not have an outref for z, then X retains a clean outref
for z until Z has received an insert message from Y.

If a back trace visits inref z before the insert message
reaches there, it will return Live from the clean outref. Oth-
erwise, it will find all outrefs for z.

The insert barrier is a small modification to the insert pro-
tocol described in Section 2. In systems that send the insert
message synchronously, site X is informed when the insert
message reaches Z [ML94]. Also, the insert barrier can be
modified to suit schemes that avoid insert messages; in fact,
little change is needed for systems using “indirect protec-
tion” [SDP92].

6.2 Non-atomic Local Tracing

Mutations may change the object graph while the local trace
is computing back information. The computed information
must account for these mutations safely. Further, a back trace
may visit a site while it is computing back information.

During a local trace, we keep two copies of the back in-
formation: the old copy retains the information from the
previous local trace, while the current trace prepares the new
copy. When this trace completes, the new copy replaces the
old atomically. A back trace visiting the site in the meantime
uses the old copy. If a transfer barrier is applied on an inref i
in this time, we clean the outrefs in i.outset in the old copy;
we also remember i and clean the outrefs in i.outset in the
new copy when it is ready. This preserves the safety invariant
and preserves the following completeness invariant:
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Completeness Invariant An outref is clean only if it is
reachable from a clean inref or if it was live when the last
local trace began.

6.3 Non-atomic Mutator

A mutator may store a reference in a variable outside the
object store and retrieve the reference later. This raises the
following potential problem. In the context of Figure 5,
the mutator may traverse the remote reference f and store a
reference to, say, x in a local variable. The transfer barrier
would then clean the outrefs in f.outset. If site Q does a local
trace now, it will revert inref f to its suspected status. Later,
the mutator may use the stored reference to copy z into y
without invoking the barrier.

The local safety invariant is preserved, however, because
local tracing views variables as application roots, which are
treated just like persistent roots. As a result, all outrefs reach-
able from them are cleaned. Thus, all outrefs that could be
affected due to copying a reference reachable from a variable
remain clean.

6.4 Non-atomic Back Tracing

So far we assumed that a back trace happens instantaneously
such that it sees consistent back information at various sites.
In practice, a back trace may overlap with mutations, making
it unsafe even if back information is kept up to date at each
site. For example, in Figure 5, a back trace from g may visit
site Q before the mutator creates the reference, so that it does
not see the updated back information at Q. Yet the trace may
visit S after the mutator has deleted the old path and S has
done a local trace to reflect that. We use the following rule
to ensure a safe view.

Clean Rule When an ioref is cleaned while a trace is active
there, the return value of the trace is set to Live.

This rule implies that if there is any overlap in the periods
when an ioref is clean and when a trace is active there, the
trace will return Live. We show below that it ensures safety.

Proof of Safety
Suppose a mutator creates a new reference to a suspected

object z. To do this, the mutator must traverse an old path to
z; we can represent this path as a sequence:

0 1

where is an inter-site reference to an object in site : 0

is a clean object and the rest are suspected objects.
The new reference may affect back traces visiting an outref
reachable from z. Such a trace views the path above as a

sequence of iorefs:

0 0 1 1

where and are the inref and the outref on site ; 0

and 0 are clean, while the rest are suspected. (Note that an

intersite reference corresponds to 1 .) We show
that such a back trace is safe even if the mutator deletes the
existing path to z.

Part I
If a back trace reaches after the mutator has traversed
, it will find the updated back information as described in

Section 6.1. A potential problem occurs if the mutation is a
remote copy; that is, z is a remote reference (corresponding
to 1) and is copied to another remote site. A back
trace might visit 1 before the insert message reaches there
and visit after the outref has been reverted to its suspected
status. However, 1 must have received an insert message
in the meanwhile due to the insert barrier, so the clean rule
will set the return value of the trace to Live.

Part II
If a back trace reaches before the mutator has traversed
, we show that the trace will return Live. The back trace

traverses the path to z backwards. Intuitively, either the back
trace will reach 0, or the mutator and the back trace will
cross each other and the resultant overlap will cause the trace
to return Live. However, the proof is non-trivial because
a back trace visiting need not traverse the path in the
reverse order. As mentioned in Section 4.4, a back trace may
fork parallel branches to other iorefs and some branches may
overtake others. It is therefore not obvious that there will be
an ioref where the clean period due to the transfer barrier will
overlap with the period when the back trace is active there.

For example, in Figure 6, a back trace from g will fork a
branch to site Q and another to site R. In one scenario, the first
branch might miss the mutator if it visits R before the mutator
reaches there; it might then return Garbage if inref e is already
visited by the second branch. In another scenario, the second
branch might miss the mutator if the mutator has already
traversed past the inter-site reference to f and site R does a
local trace immediately after to revert the cleaned iorefs; the
second branch might then find the path deleted and return
Garbage. The two scenario are not possible simultaneously,
however, because the first requires the second branch to visit
R before the mutator, and the second requires it to visit R
later.

a b c

site P                site Q                     site R                site S
a: root
g:Q, R

c: Q
e: S

b: P
f: R

d

eg fxz

y

d: R

b: clean d: clean
f: e
g: e

c: clean
g: f

e: d

Figure 6: A problem case.

Below we prove that there must be an overlap in general.

9



The intuition is that if a branch of the back trace reaches
before the mutator reaches , then either some branch must
reach 1 before the mutator reaches 1, or this branch
must return Live. We use the following notation:

The mutator message transferring during its traversal.
The message for the back call from 1 to .
The message from to 1 for returning the back call.

The time when message was sent.
The time when message was received.

The time when is first visited by the back trace.

The following relations hold:

R1 ,
i.e., we assume in-order delivery between a pair of sites.

R2 1 , for 1 .
R3 , for all visited by the back

trace.
R4 , for 1 , provided

. Before , the mu-
tator could not have deleted the path , so a back
trace will return from only after has been visited.

Very little processing is associated with receiving a mes-
sage before other messages may be received: The handler of
a mutator message must atomically apply the transfer barrier.
The handler of a back call must check if the ioref is clean.
Thus, the critical sections involved are very short. We show
that the following lemmas hold. Lemmas 1 and 2 specify
periods when an inref or an outref must be clean. Lemmas 3
and 4 specify periods when a back trace must be active at an
inref or an outref.

Lemma1 Inref is clean right after .
Proof The transfer barrier cleans upon receiving .

Lemma2 Outref is clean during
1 .

Proof The transfer barrier cleans upon receiving .
The outref remains clean until does the next local trace or
until the mutator holds a variable from where 1 is reach-
able. Thus, must remain clean until the mutator transfers

1 to 1.

Lemma3 If the back
trace visits before , it must be active there
during 1 .
Proof Before , the mutator could not have
deleted the link 1 . Therefore, when the trace first
visits , it will be active there until it has received a response
from 1.

Lemma4 If the back trace visits , it must be active there
during .
Proof True by definition.

Theorem If a back trace visits before the mutator visits
, then either the back trace will return Live or it will visit

1 before the mutator visits 1, for 1 .

Proof
Given
if

[ ] overlaps
[trace active at ] overlaps [ clean] (Lemma 4, 2)
decide Live (Clean rule)

else

(R4)
if 1

1 overlaps
[trace active at ] overlaps [ clean] (Lemma 3, 1)
decide Live (Clean rule)

else
1

1 (R1)
if 1 1

1 overlaps [ 1 ]
[trace active at 1] overlaps [ 1 clean] (Lemma 4, 2)
decide Live (Clean rule)

else
1 1

1 1 (R3)

From the theorem above, if the back trace visits before
the mutator visited , it must return Live or visit 0. Since

0 is clean, the trace will return Live.
We showed above that safety is ensured upon a single

mutation. We claim (without giving proof) that safety is
ensured upon multiple concurrent mutations as well.

7 Related Work

Previous schemes for collecting inter-site garbage cycles may
be categorized as follows.

Global Tracing
A complementary global trace is conducted periodically

to collect cyclic garbage, while other garbage is collected
more quickly by local tracing [Ali85, JJ92]. The drawback
of global tracing is that it may not complete in a system with
a large number of faulty sites.

Hughes’s algorithm propagates timestamps from inrefs to
outrefs and collects objects timestamped below a certain
global threshold [Hug85]. The persistent roots always have
the current time, and a global algorithm is used to compute
the threshold. The advantage of using timestamps over mark
bits is that, in effect, multiple marking phases can proceed
concurrently. However, a single site can hold down the global
threshold, prohibiting garbage collection in the entire system.

Central Service
Beckerle and Ekanadham proposed that each site send

inref-outref reachability information to a fixed site, which
uses the information to detect inter-site garbage cycles
[BE86]. However, the fixed site becomes a performance
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and fault tolerance bottleneck.
Ladin and Liskov proposed a logically central but physi-

cally replicated service that tracks inter-site references and
uses Hughes’s algorithm to collect cycles [LL92]. The cen-
tral service avoids the need for a distributed algorithm to
compute the global threshold. However, cycle collection still
depends on timely correspondence between the service and
all sites in the system.

Subgraph Tracing
The drawbacks of global tracing can be alleviated by first

delineating a subgraph of objects reachable from an object
suspected to be cyclic garbage. Another distributed trace
is then conducted within this subgraph; this trace treats all
objects referenced from outside the subgraph as roots. All
subgraph objects not visited by this trace are collected. Note
that a garbage cycle might point to live objects, and the
associated subgraph would include all such objects. Thus,
the scheme does not possess the locality property.

Lins et al. proposed such a scheme as cyclic reference
counting in a system that used reference counting for local
collection instead of local tracing [LJ93]. This scheme re-
quires two distributed traces over objects in a subgraph. Jones
and Lins improved the scheme such that multiple sites could
conduct traces in parallel, but it required global synchroniza-
tion between sites [JL92].

Group Tracing
Another method to alleviate the drawbacks of global trac-

ing is to trace within a group of selected sites, thus collecting
garbage cycles within the group. A group trace treats all
references from outside the group as roots.

The problem with group tracing is configuring groups in
order to collect all inter-site cycles. Lang et al. proposed
using a tree-like hierarchy of embedded groups [LQP92].
This ensures that each cycle is covered by some group, but
the smallest group covering, say, a two-site cycle may con-
tain many more sites. Further, the policy for forming and
disbanding groups dynamically is unclear.

Maeda et al. proposed forming groups using subgraph
tracing [MKI 95]. A group consists of sites reached transi-
tively from some objects suspected to be cyclic garbage. This
work was done in the context of local tracing and inter-site
weighted reference counting. Rodrigues and Jones proposed
an improved scheme in the context of inter-site reference list-
ing [RJ96]. One drawback of this approach is that multiple
sites on the same cycle may initiate separate groups simulta-
neously, which would fail to collect the cycle. Conversely,
a group may include more sites than necessary because a
garbage cycle may point to chains of garbage or live objects.
Another problem is that group-wide tracing might never col-
lect all cycles. Since a group-wide trace is a relatively long
operation involving multiple local traces, it is not feasible to
cover all garbage cycles in a system with many sites.

Schemes with Locality
Few schemes for collecting cyclic garbage have the locality

property. The oldest among these is migration. The idea is
to converge a suspected distributed garbage cycle to a single
site: if it is indeed a garbage cycle, it will be collected by local
tracing [Bis77]. Since migration is expensive, it is crucial to
use a good heuristic for finding suspects; we proposed the
distance heuristic in this context earlier [ML95]. However,
some systems do not support migration due to security or
autonomy constraints or due to heterogeneous architecture.
Those that do must patch references to migrated objects.
Shapiro et al. suggested virtual migration [SGP90]. Here, an
object changes its logical space without migrating physically.
However, a logical space may span a number of sites, so local
tracing must involve inter-site tracing messages.

Schelvis proposed forwarding local-reachability informa-
tion along outgoing inter-site references [Sch89]. This algo-
rithm is intricate and difficult to understand; however, some
of its problems are apparent. The algorithm requires full
reachability information between all inrefs and outrefs (not
just suspected ones). An inref contains a set of paths in-
stead of source sites; each path indicates a sequence of inrefs
leading to . Collecting a cycle located on sites might
take 3 messages. Recently, Louboutin presented an
improved scheme that sends only messages [LC97].
However, it too requires full inref-outref reachability infor-
mation, and its space overhead is larger: each inref stores a
set of vector timestamps; each vector corresponds to a path i
is reachable from.

Back tracing was proposed earlier by Fuchs [Fuc95]. How-
ever, this proposal assumed that inverse information was
available for references, and it ignored problems due to con-
current mutations and forward local traces. A discussion
on back tracing, conducted independently of our work, is
found in the archives of the mailing list gclist@iecc.com at
ftp://iecc.com/pub/gclist/gclist-0596.

8 Summary and Conclusions

We have presented a scheme for collecting distributed
garbage cycles. The scheme has two parts: The first uses
the distance heuristic to find objects highly suspected to be
cyclic garbage. The second traces back from such an object
to check if it is reachable from a clean object.

A back trace spreads quickly by traversing inrefs and out-
refs rather than individual references. This requires the use
of reachability information between suspected inrefs and
outrefs. We presented an efficient technique to compute
this information during local forward tracing without trac-
ing objects multiple times. Storing this information requires

space, where and are the number of sus-
pected inrefs and suspected outrefs.

A site starts a back trace from a suspected outref when the
back trace is highly likely to confirm it as garbage. We pro-
posed a technique that reduces abortive attempts by waiting
until other inrefs and outrefs on the cycle are likely to have
been suspected as well. After a back trace completes, the
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initiator site sends the outcome to other participating sites.
The trace requires very little processing at each site, and it
sends 2 small messages where is the number of
inter-site references traversed and is the number of par-
ticipants. Its message complexity is lower than that of any
previous scheme with locality. Multiple back traces may be
triggered concurrently; however, back traces spread quickly
enough that overlap is not likely.

Back traces are conducted concurrently with mutators and
forward local traces. We use two barriers to keep the back
information conservatively safe, yet we ensure that the bar-
riers do not prohibit the collection of garbage cycles. These
barriers are applied only when a mutator transfers references
between sites and are inexpensive. Keeping the back infor-
mation up to date at each site is not sufficient because a back
trace may see an inconsistent distributed view. We ensure
that back traces see a safe view using short critical sections
and without sending additional messages.

Back tracing has some drawbacks. First, it is more com-
plex than schemes based on migrating the suspects. Second,
it requires full reachability information between suspected
inrefs and suspected outrefs. Computing this information
requires a modified depth-first traversal of the suspected ob-
jects. Therefore, breadth-first copying collectors would need
to perform a separate traversal for these objects.

Despite these drawbacks, back tracing is an attractive
scheme because it preserves the locality property: the collec-
tion of a garbage cycle involves only the sites containing it.
It does not migrate objects and its overheads are lower than
other schemes with locality. Furthermore, it collects all dis-
tributed garbage cycles. We designed this scheme for imple-
mentation in a large, distributed object database [LAC 96].
It is suitable for emerging distributed object systems that must
scale to a large number of sites.
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